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Abstract. We prove that finite flat digraph algebras and, more generally, finite compatible
flat algebras satisfying a certain condition are finitely q-based (possess a finite basis for their
quasiequations). We also exhibit an example of a twelve-element compatible flat algebra
that is not finitely q-based.
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1. Introduction

For a finite directed graph (V,E) one can define an algebra with the underlying

set V ∪E ∪{0}, one constant 0 and two binary operations ∧, · in this way: a∧a = a

and a ∧ b = 0 whenever a 6= b; ab = c whenever a, c ∈ V and b = (a, c) ∈ E;

ab = 0 in all other cases. Algebras obtained from finite directed graphs in this

way are called finite flat digraph algebras. One particular six-element flat digraph

algebra (inherently non-finitely based for equations) played a significant role in the

proof of undecidability of the existence of a finite basis for the equational theory of

a finite algebra ([2], [3] and [4]). It was plausible to expect that it could serve a

similar purpose in an attempt to prove that also the existence of a finite basis for the

quasiequations of a finite algebra is undecidable. However, in this paper we are going

to show that all finite flat digraph algebras are finitely q-based (possess a finite basis

for their uasiequations), which makes them unsuitable. We will investigate a more
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general class of finite compatible flat algebras, in which (under a modest assumption

on the signature) every algebra can be embedded both into a finitely q-based and

into a non-finitely q-based algebra.

For the terminology and basic concepts of universal algebra the reader is referred

to the monograph [5]. For the literature on quasiequational theories see, e.g., [1]

and [6].

2. Compatible 0-semilattice algebras

Let σ be a finite signature containing (among other symbols) a binary symbol ∧

(the meet) and a nullary symbol 0.

By a 0-semilattice algebra we mean a σ-algebra satisfying the equations

(1) x ∧ (y ∧ z) = (x ∧ y) ∧ z,

(2) x ∧ y = y ∧ x,

(3) x ∧ x = x,

(4) f(x1, . . . , xi−1, 0, xi+1, . . . , xn) = 0 for every n-ary operation f of σ and every

i ∈ {1, . . . , n}.

A 0-semilattice algebra is said to be compatible if it satisfies the equations

(5) f(z1, . . . , zi−1, x ∧ y, zi+1, . . . , zn) = f(z1, . . . , zi−1, x, zi+1, . . . , zn) ∧ f(z1, . . . ,

zi−1, y, zi+1, . . . , zn) for every n-ary operation f of σ and every i ∈ {1, . . . , n}.

So, the class of compatible 0-semilattice σ-algebras is a variety.

For a variable x, basic x-terms of depth n are defined as follows. The term x is

the only basic x-term of depth 0. For n > 0, basic x-terms of depth n are the terms

f(x1, . . . , xi−1, t, xi+1, . . . , xn) such that f is an n-ary operation of σ, 1 6 i 6 n,

t is a basic x-term of depth n− 1 and x1, . . . are variables different from x. A basic

x-term t will be usually denoted by t(x), in which case t(u) stands for the term

resulting from t by substituting u for x (where u is any term).

For a σ-algebra B and a basic x-term t of depth n, any interpretation of the

variables different from x by elements of B gives rise to a unary polynomial of B.

The unary polynomials obtained in this way will be called the basic polynomials of B

of depth n.

Lemma 2.1. Let A be a compatible 0-semilattice algebra. Then p(a ∧ b) =

p(a) ∧ p(b) for all basic polynomials p of A and all elements a, b ∈ A.

���������
. It is easy. (Observe that the statement is not true for all unary poly-

nomials p.) �
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Lemma 2.2. Let A be a compatible 0-semilattice algebra and F be a proper

filter of A (i.e., a nonempty subset closed under meet, not containing 0 and such

that b ∈ F whenever a ∈ F and a 6 b). Then for every basic polynomial p of A,

p−1(F ) is either empty or a proper filter of A.

���������
. It follows easily from Lemma 2.1. �

By a flat algebra we mean a 0-semilattice algebra A such that a∧b = 0 for all pairs

of distinct elements a, b ∈ A. Observe that a flat algebra is monotonic, i.e., satisfies

x 6 y → f(z1, . . . , zi−1, x, zi+1, . . . , zn) 6 f(z1, . . . , zi−1, y, zi+1, . . . , zn) for every

n-ary operation f of σ and every i ∈ {1, . . . , n}.

One can easily see that a flat algebra is compatible if and only if

(5′) f(c1, . . . , ci−1, a, ci+1, . . . , cn) = f(c1, . . . , ci−1, b, ci+1, . . . , cn) 6= 0 implies a = b

for every n-ary operation f of σ and every i ∈ {1, . . . , n}.

For every partial algebra G of a signature τ not containing ∧ and 0 we can de-

fine a flat τ ∪ {∧, 0}-algebra A, called the flat algebra over G, by A = G ∪ {0},

f(a1, . . . , an) = a in A whenever f(a1, . . . , an) = a in G, and f(a1, . . . , an) = 0 oth-

erwise. This flat algebra is not necessarily compatible. For example, if G is a finite

groupoid, then the flat algebra over G is compatible if and only if G is a quasigroup.

Finite flat digraph algebras are all compatible.

Observation 2.3. For every finite compatible flat algebra A there exists a first-

order sentence Φ such that the finite models of Φ are precisely the finite algebras

belonging to the quasivariety generated by A.

���������
. Put K = |A|. It is easy to see that the following are equivalent for a

finite compatible 0-semilattice algebra B:

(e1) B belongs to the quasivariety generated by A;

(e2) every two elements b0, b1 of B such that b0 < b1 can be separated by a congru-

ence of B, the factor by which is isomorphic to a subalgebra of A;

(e3) for every b0, b1 ∈ B with b0 < b1 there exist elements c1, . . . , cr ∈ B for some

r < K such that the principal filters F1, . . . , Fr generated by c1, . . . , cr are

pairwise disjoint, b1 ∈ F1, b0 belongs to the complement O of F1 ∪ . . . ∪ Fr

in B, the equivalence R with blocks O,F1, . . . , Fr is a congruence of B and the

factor B/R is isomorphic to a subalgebra of A.

Clearly, the condition (e3) can be rewritten as a first-order sentence. �
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3. The quasivariety Q′

A

In the following let A be a finite compatible, flat algebra. Put K = |A|.

Denote by Q′

A the quasivariety determined by the equations (1)–(5) and the fol-

lowing quasiequations:

(6) x0 6 x1 & t(x) > x1 & u(x) > x1& t(y) > x1 & u(y) ∧ x1 6 x0 → x0 = x1 for

every pair of basic x-terms t, u of depth 6 K;

(7) x0 6 x1 & Ht1,...,tK
→ x0 = x1 for every K-tuple of basic x-terms t1, . . . , tK of

depth 6 K, where Ht1,...,tK
is the conjunction of the following equations:

ti(xi) > x1 (i = 1, . . . ,K),

ti(xj) ∧ x1 6 x0 (i, j = 1, . . . ,K and i 6= j).

Lemma 3.1. Q′

A is a finitely q-based quasivariety containing A.

���������
. The set of quasiequations (6)–(7) is essentially finite, as it contains

only finitely many quasiequations that differ by not only renaming their variables.

Consequently, Q′

A is finitely q-based. It remains to prove that (6) and (7) are satisfied

in A. Suppose that (6) fails in A by some interpretation v 7→ v′ of variables. Then

x′0 < x′1, so that x
′

0 = 0; now t(x′) > x′1 implies t(x
′) = x′1. Similarly we get

u(x′) = x′1 and t(y
′) = x′1. But A satisfies (5′), so t(x′) = t(y′) 6= 0 implies x′ = y′;

hence x′1 = u(x′)∧x′1 = u(y′)∧x′1 = 0, a contradiction. Using the fact that A cannot

containK nonzero, pairwise distinct elements, one can similarly prove that A satisfies

the quasiequations (7). �

Lemma 3.2. Let B ∈ Q′(A) and b0, b1 ∈ B be two elements such that b1
�
b0;

let F be a maximal filter of B such that b1 ∈ F and b0 /∈ F . For any two basic

polynomials p, q of B of depth 6 K, the sets p−1(F ) and q−1(F ) are either disjoint

or equal.

���������
. The two basic polynomials p and q correspond to two basic terms t

and u of depth 6 K. Suppose that there exist elements x′, y′ such that p(x′) ∈ F ,

p(y′) ∈ F , q(x′) ∈ F and q(y′) /∈ F . It follows from the maximality of F that there

exists an element e ∈ F with q(y′)∧e 6 b0. Put x
′

1 = p(x′)∧p(y′)∧q(x′)∧e, so that

x′1 ∈ F . Put x′0 = b0 ∧ x
′

1, so that x
′

0 < x′1. But the quasiequation (e6) interpreted

by x 7→ x′, y 7→ y′, x0 7→ x′0, x1 7→ x′1 gives x
′

0 = x′1, a contradiction. �

668



Lemma 3.3. Let B ∈ Q′(A) and b0, b1 ∈ B be two elements such that b1
�
b0;

let F be a maximal filter of B such that b1 ∈ F and b0 /∈ F . There are at most K−1

nonempty subsets of B that can be expressed as q−1(F ) for a basic polynomial q

of B, and they can be arranged into a sequence F1, . . . , Fr (for some r < K) in such a

way that F1 = F and for every i ∈ {2, . . . , r} there are an index j ∈ {1, . . . , i−1} and

a basic polynomial pi of B of depth 1 with Fi = p−1

i (Fj). The collection F1, . . . , Fr,

together with the complement of their union, is a partition and the corresponding

equivalence is a congruence of B.

���������
. Let us define a (finite or infinite) sequence F1, p1, F2, p2, . . . of filters Fi

and basic polynomials pi of depth 6 1 by induction in this way: F1 = F and p1 is the

identity on B; if Fi, pi have been defined and if there exist an element a /∈ F1∪. . .∪Fi

and a basic polynomial p of depth 1 such that p(a) ∈ Fj for some j 6 i, take one

such pair a, p and put pi+1 = p and Fi+1 = p−1

i+1
(Fj); if there is no such pair a, p, the

sequence already constructed will have no continuation. Clearly (by induction on i),

Fi = q−1

i (F ) for a basic polynomial qi of B of depth < i. The sets Fi are pairwise

disjoint filters according to Lemmas 2.2 and 3.2.

Suppose that the sequence has at least K members F1, . . . , FK . For any i =

1, . . . ,K take an element x′i ∈ Fi, so that qi(x
′

i) ∈ F . For every i 6= j we have x′j /∈ Fi,

i.e., qi(x
′

j) /∈ F , so that there exists an element ei,j ∈ F with qi(x
′

j)∧ei,j 6 b0. There

is an element x′1 ∈ F such that x′1 6 qi(x
′

i) for all i and x
′

1 6 ei,j for all i 6= j. Put

x′0 = b0 ∧x
′

1, so that x
′

0 < x′1. But the quasiequation (e7), interpreted in the obvious

way, says that x′0 = x′1, a contradiction.

So, the sequence F1, p1, . . . ends with Fr , pr for some r 6 K − 1. Clearly, every

subset of the form q−1(F ) for a basic polynomial q can be found among F1, . . . , Fr.

Put O = B − (F1 ∪ . . . ∪ Fr), so that 0 ∈ O and F1, . . . , Fr, O is a partition of B. It

remains to prove that the corresponding equivalence is a congruence of B.

Suppose that there exist an n-ary operation f in σ and an n-tuple a1, . . . , an of

elements of B such that aj ∈ O for some j but f(a1, . . . , an) ∈ Fi for some i. Then

p(aj) ∈ Fi where p(x) = f(a1, . . . , aj−1, x, aj+1, . . . , an) is a basic polynomial of

depth 1 and aj /∈ F1 ∪ . . . ∪ Fr, so that (qip)
−1(F ) is nonempty and different from

all F1, . . . , Fr, a contradiction. We have proved that if at least one of the elements

a1, . . . , an belongs to O, then f(a1, . . . , an) ∈ O.

Now it remains to show that if f is n-ary, f(a1, . . . , an) ∈ Fj and ai, a
′

i ∈ Fk for

some j, k ∈ {1, . . . , r} and i ∈ {1, . . . , n}, then f(a1, . . . , ai−1, a
′

i, ai+1, . . . , an) ∈ Fj .

Put q(x) = qj(f(a1, . . . , ai−1, x, ai+1, . . . , an)), so that q is a basic polynomial of B of

depth at mostK. We have q(ai) ∈ F and qk(ai) ∈ F , so that q−1(F ) = q−1

k (F ). Since

a′i belongs to this set, we get q(a
′

i) ∈ F , i.e., f(a1, . . . , ai−1, a
′

i, ai+1, . . . , an) ∈ Fj . �
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Theorem 3.4. Let A be a finite compatible, flat algebra with K elements. Then

Q′

A is a finitely q-based and locally finite quasivariety containing A; every algebra

in Q′

A is isomorphic to a subdirect product of algebras of cardinality at most K.

Consequently, A is not inherently nonfinitely q-based.
���������

. Let B ∈ Q′

A. For every pair b0, b1 of distinct elements of B (we can

assume that b1
�
b0) there exists a maximal filter of B containing b1 but not b0, so

that by Lemma 3.3 these two elements can be separated by a congruence with at

most K blocks. It follows that every algebra from B is isomorphic to a subdirect

product of algebras of cardinality at most K. Thus Q′

A is contained in a finitely

generated variety and hence it is locally finite. According to Lemma 3.1, Q′

A is

finitely q-based and contains A. �

4. Finitely q-based compatible flat algebras

Let A be a finite compatible flat algebra. By a segment of A we will mean a

nonempty subset of A, the elements of which can be arranged into a finite sequence

0, c1, . . . , cr in such a way that c1 6= 0 and for every i = 2, . . . , r there exists a basic

polynomial p of A of depth 1 with p(ci) = cj for some j ∈ {1, . . . , i− 1}.

Let S be a segment of A. The algebra obtained from S, considered as a partial

subalgebra of A, by setting all the undefined operations to 0 will be called the

0-completion of S.

Let S be a segment of A and S ′ be the subalgebra of A generated by S. The

segment S is said to be regular if the equivalence on S ′ with the only non-singleton

block {0} ∪ (S′ − S) is a congruence of S ′. In that case, the factor of S ′ by this

congruence is isomorphic to the 0-completion of S.

Theorem 4.1. Let A be a finite compatible flat algebra such that the 0-comple-

tion of every regular segment of A belongs to the quasivariety generated by A. Then

A is finitely q-based.
���������

. Denote by Q′′

A the subquasivariety of Q
′

A determined by the quasi-

equations (1)–(7) and all quasiequations in at most K variables that are satisfied

in A. (Here K = |A|.) Since Q′

A is locally finite by Theorem 3.4, Q
′′

A is locally

finite. Since only finitely many equations are needed to reduce the terms in at most

K variables to a finite set T0 of such terms, and then quasiequations in at most

K variables correspond to subsets of T 2
0 with distinguished elements, Q

′′

A is finitely

q-based. Of course, A ∈ Q′′

A. We are going to prove that Q
′′

A is the quasivariety

generated by A. It is sufficient to show that every finite algebra from Q′′

A belongs to

the quasivariety generated by A.
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Let B be a finite algebra from Q′′

A; let b0, b1 ∈ B be such that b1
�
b0. By 3.3

there is a congruence with at most K blocks O,F1, . . . , Fr, yielding a quotient al-

gebra C, such that F1, . . . , Fr are filters (now they are principal filters), F1 = F ,

b1 ∈ F1, b0 ∈ O, and for every i ∈ {2, . . . , r} there exist an index j < i and a basic

polynomial pi of length 1 with Fi = p−1

i (Fj). But all the coefficients occurring in pi

belong to F1 ∪ . . . ∪ Fr, so there exists a basic x-term ui(x, x1, . . . , xr) of depth 1

such that ui(Fi, F1, . . . , Fr) ⊆ Fj . Now we can combine these terms ui together to

obtain, for each i, a basic x-term ti(x, x1, . . . , xr) such that ti(Fi, F1, . . . , Fr) ⊆ F ,

i.e., tCi (Fi, F1, . . . , Fr) = F1. (We take t1 = x.) For any term u denote by ti(u) the

term obtained from ti by replacing the only occurrence of x with u. Now consider

the quasiequation

x0 6 x1 & D → x0 = x1

where D is the conjunction of all these equations:

(i) ti(xi) > x1, for any i = 1, . . . , r;

(ii) ti(xj) ∧ x1 6 x0, for any i, j ∈ {1, . . . , r} with i 6= j;

(iii) ti(f(xi1 , . . . , xin
)) > x1, for any n-ary operation f of σ and any i, i1, . . . , in with

fC(Fi1 , . . . , Fin
) = Fi;

(iv) ti(u) ∧ x1 6 x0, for any i = 1, . . . , r and any term u in variables x1, . . . , xr

containing a subterm f(xi1 , . . . , xin
) with fC(Fi1 , . . . , Fin

) = O (it is possible

to consider only finitely many such terms u).

Clearly, this quasiequation fails in B; since it is a quasiequation in at most K

variables x0, . . . , xr, it must fail in A by some elements a0, a1, . . . , ar. But then

the subset {a0, a1, . . . , ar} is a regular segment of A, and the 0-completion of this

subset is isomorphic to C. Since C belongs to the quasivariety generated by A, the

elements b0, b1 were separated by a congruence, the factor by which belongs to the

quasivariety. �

Corollary 4.2. Every finite flat digraph algebra is finitely q-based.

���������
. In this case, all segments are subalgebras. �

Corollary 4.3. The flat algebra over any finite quasigroup (considered as a

groupoid) is finitely q-based.

���������
. In this case, all regular segments are subalgebras. �

Corollary 4.4. If σ is the signature containing only one unary symbol in addition

to ∧ and 0, then every finite compatible flat σ-algebra is finitely q-based.

���������
. In this case, the 0-completion of every segment is isomorphic to a

subalgebra. �
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5. The embedding theorem

Theorem 5.1. Let σ be a finite signature containing, in addition to ∧ and 0, at

least two unary symbols f and g (and, possibly, some other operation symbols). Then

every finite compatible flat σ-algebra can be embedded into two finite compatible

flat σ-algebras, one finitely q-based and the other one not finitely q-based.
���������

. Let G be a finite compatible flat algebra.

Denote by S1, . . . , Sr all the segments of G. (It would be sufficient to take just

those with the 0-completions not belonging to the quasivariety generated by G.) For

every i = 1, . . . , r let us take an isomorphic copy Ti of the partial algebra Si − {0},

in such a way that the sets G, T1, . . . , Tr are pairwise disjoint. Denote by G
′ the flat

algebra with the underlying set G∪T1∪ . . .∪Tr, with the operations evaluated to 0 in

all cases except when needed to define them in such a way that G is a subalgebra and

Ti are partial subalgebras. It follows from Theorem 4.1 that G
′ is finitely q-based.

Next we are going to construct a non-finitely q-based extension of G. Let us take

one fixed positive integer k such that k > 2 and there is no sequence u0, u1, . . . , uk of

pairwise distinct elements of G−{0} such that g(ui−1) = ui for i = 1, . . . , k. Denote

by A the flat algebra, with G as a subalgebra, containing k+ 10 additional elements

u0, u1, . . . , uk, a, b, c, v2, a2, b2, v3, a3, c3 with all operations not inside G evaluated

to 0 except for

g(ui−1) = ui for i = 1, . . . , k,

f(u0) = a, f(a) = b, g(a) = c,

f(v2) = a2, f(a2) = b2, f(v3) = a3, g(a3) = b3.

(Fig. 1, in which the elements not belonging to G are pictured for k = 2, may help

to understand this definition.)

u1

a

b c

g
u0 v2 v3

a2 a3

b2 c3

f ggf

f f f

u2

g

Fig. 1

Denote by Q the quasivariety generated by A. A σ-algebra B belongs to Q if and

only if every two distinct elements of B can be separated by a homomorphism of B

into A.
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For every positive integer n let An be the σ-algebra with elements 0, u0, . . . , uk,

αi,j , βi, γj (0 6 i 6 n, 0 6 j 6 n − 1, i − 1 6 j 6 i) and with operations

defined in this way: An is a semilattice with the only comparabilities 0 < ui (i =

0, . . . , k), 0 < βn < βn−1 < . . . < β0, 0 < γn−1 < γn−2 < . . . < γ0, 0 < αn,n−1 <

αn−1,n−1 < αn−1,n−2 < . . . < α1,0 < α0,0; the other operations evaluate to 0 except

that g(ui−1) = ui (i = 1, . . . , k), f(u0) = α0,0, f(αi,j) = βi, g(αi,j) = γj . (Fig. 2,

in which the situation is illustrated for k = 2 and n = 3, may help to understand

this definition. In the picture lines with arrows indicate unary operations, while the

other lines represent coverings but the covers between 0 and the elements ui are not

indicated.)

u2

α0,0

γ0

u1

u0

gf

f

α1,0

α1,1

α2,1

α2,2

α3,2

0

β0

β1

β2

γ1

γ2

f

f

f

f

f

g

g

g

g

g
β3

g g

Fig. 2

Denote by rn the equivalence on An with the only non-singleton block {0, βn}.

Clearly, rn is a congruence of An. Denote the factor An/rn by Bn. For a ∈ An −

{0, βn}, the element a/rn will be identified with a.

Suppose that there exists a homomorphism H : Bn → A such that H(uk) 6=

H(0/rn), i.e., H(uk) 6= 0. Since gk(u0) = uk in Bn and there is no other element e
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in A with gk(e) 6= 0 and gk+1(e) = 0 other than u0, we get H(u0) = u0 and then

H(ui) = H(gi(u0)) = gi(H(u0)) = gi(u0) = ui for all i. Now H(α0,0) = H(f(u0)) =

f(H(u0)) = f(u0) = a. Consequently, H(β0) = b and H(γ0) = c. Since g(α1,0) = γ0

and a is the only element of A with g(a) = c, it follows that H(α1,0) = a. If

H(αi,i−1) = a for some i < n, then using f in a similar way we can show that

H(αi,i) = a, and then using g to show that H(αi+1,i) = a. By induction we get

H(αn,n−1) = a. But then H(0/rn) = H(βn/rn) = H(f(αn,n−1)) = f(a) = b, a

contradiction.

Since the element uk cannot be separated from 0/rn by a homomorphism of Bn

into A, we conclude that Bn does not belong to Q.

Let αm,m′ be an element of Bn such that 0 < m < n. Clearly, the set C =

Bn − {αm,m′} is a subalgebra of Bn. We are going to prove that C belongs to Q.

For this purpose, it is sufficient to show that whenever e, e′ are two elements of C

such that e is covered by e′, then e, e′ can be separated by a homomorphism of C

into A.

For every i 6 n− 1 define a mapping ψi of Bn into A by ψi(u0) = v2, ψi(e) = a2

for e > αi,i, ψi(e) = b2 for e > βi and ψi(e) = 0 for all other elements e. Also, for

every i 6 n − 1 define a mapping χi of Bn into A by χi(u0) = v3, χi(e) = a3 for

e > αi+1,i, χi(e) = c3 for e > γi and χi(e) = 0 for all other elements e. It is easy

to check that both ψi and χi are homomorphisms. Consequently, their restrictions

to C are homomorphisms of C into A. The only pairs of covers not separated by any

of these homomorphisms are the pairs (0, u1), . . . , (0, uk). So, it remains to separate

these pairs of elements.

If m = m′, then these pairs are separated by the homomorphism ϕ defined in this

way: ϕ(u0) = u0, . . . , ϕ(uk) = uk, ϕ(e) = a for e > αm,m−1, ϕ(e) = b for e > βm,

ϕ(e) = c for e > γm−1 and ϕ(e) = 0 for all other elements e. If m′ = m − 1,

then they are separated by the homomorphism ϕ′ defined in this way: ϕ′(u0) =

u0, . . . , ϕ
′(uk) = uk, ϕ

′(e) = a for e > αm′,m′ , ϕ′(e) = b for e > βm′ , ϕ′(e) = c for

e > γm′ and ϕ′(e) = 0 for all other elements e.

We have proved that C belongs to Q. Since every subalgebra of Bn generated

by at most n− k elements is contained in at least one such C, it follows that every

subalgebra generated by at most n− k elements belongs to Q. Consequently, there

is no base for the quasiequations of Q that would contain only quasiequations in at

most n− k variables. Since k was fixed while n was arbitrary, there is no finite base

at all. �

Remark 5.2. In the above construction of the algebra A it was not essential that

the elements b2 and c3 are distinct.
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